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In this study we examine theoretically the possibility that the elastic scattering amplitude may be sub
stantially enhanced due to the opening of a strong inelastic channel as the elastic and inelastic channels are 
coupled through the unitarity condition. Some recent experimental data on proton-proton scattering have 
suggested rather convincingly such a phenomenon. The theoretical investigation of this feature is carried out 
by means of the current method of dispersion relations. The dynamical inputs of the scattering amplitudes 
are derived from the perturbation diagrams of the Feynman theory using only the one-pion-exchange dia
grams. A multichannel unitarity condition is used by retaining the three-particle intermediate states. This 
provides a coupling between the elastic and the production amplitudes. Finally, the problem is solved in 
terms of the N/D method. The results obtained demonstrate a maximum in the elastic scattering amplitude, 
which seems to explain the observed phenomenon. 

I. INTRODUCTION 

EXPERIMENTAL work on nucleon-nucleon elastic 
scattering by Martelli et al1 has shown that certain 

partial wave amplitudes in the total isotopic spin T— 1 
state is enhanced over the T=0 state at energies 
somewhat above the production threshold. This feature 
is usually not apparent from comparing the total cross 
sections of scattering in these two states, since at such 
energies many partial waves would have contributed to 
the cross sections, and the detail features would have 
been obscured. In the experimental conducted by 
Martelli et ah, the differential cross sections for p-p and 
n-p scattering at 90° in the center-of-mass (cm.) 
system are measured. Since many angular momentum 
states do not contribute to right angle scattering, this 
experiment is able to eliminate some of the nonessential 
interferences. Unfortunately, not all odd orbital angular 
momentum states are removed by this procedure, 
contrary to what is being claimed.2 Therefore, in the 
T= 1 channel, for example, part of the 3P states mix in 
with the XS and XD states, all of which are believed to be 
contributing substantially to the cross sections. 

Measurements are made at 595, 775, and 1010 MeV. 
These together with the differential cross sections at 
lower energies given by Hess3 and by Amaglobeli and 
Kazarinov4 indicate clearly the trend of the cross sec
tions for the T=0 and T= 1 states (see Fig. 1). Around 
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2 1 wish to thank Dr. D. Sprung for pointing this out to me. 
3 W. H. Hess, Rev. Mod. Phys. 30, 368 (1958). 
4 N . S. Amaglobeli, and Yu. M. Kazarinov, Zh. Eksperim. i 

Teor. Fiz. 37, 1587 (1959) [English transl.: Soviet Phys.—JETP 
37, 1125 (I960)]. 

600 MeV we see that the T= 1 state is definitely en
hanced relative to the T=0 state, whereas around 1100 
MeV the T=0 state is enhanced. The presentation of 
the first enhancement can be made more appealing by 
taking the difference of the cross sections in these two 
states, assuming that the T=l state would behave 
similar to the r = 0 state if not for the enhancement, as 
shown dotted in Fig. 1, where we see a resonance-like 
behavior at around 600 MeV. 

Since the position of the enchancement occurs at an 
energy which is very near to that required for the 
production of the w—N (3,3) isobar, and since this 
isobar can only be produced in the T= 1 state and not 
in r = 0 state, it has already been pointed out by 
Martelli et ah that the enhancement is a result of the 
coupling of the T~ 1 elastic amplitude to this produc
tion amplitude. Similarly, the enhancement at higher 
energies in the T—0 elastic amplitude may be the 
result of its coupling with the production of another 
T—N isobar which occurs at the higher energy region of 
the TT—N spectrum. We shall not, however, be involved 
with the T=0 channel, but concentrate with the T— 1 
channel for the time being. 
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FIG. 1. Elastic differential cross sections for nucleon-nucleon 
scattering in T = 0 and T=l states at 90° cm. system. 
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Taking the suggested mechanism for granted, we see 
that if the (3,3) isobar is produced in a 1=0 state 
relative to the nucleon, then because of the conservation 
of total angular momentum, isotopic spin, and parity, 
the only possible two-nucleon initial state is l D 2 ( r = 1). 
Hence, the partial wave amplitude that is of interest 
will be in T= 1, / = 2 state. In fact, this is why the right 
angle scattering experiment is performed—to bring out 
the full effect of this possibility. 

We might remark that the maximum occurring at 
600 MeV cannot be identified with a resonance in the 
J =2 state. For if it were a resonance, the inelastic 
cross section at this energy must be at least as large as 
23 mb in order to be consistent with unitarity. This is 
known not to be the case.3 Therefore, if we insist that 
this maximum occurs in the J =2 state, then it is 
probably more adequate to call it a "woolly cusp" 
after Pais and Nauenberg.6 

Recently, many authors6-9 have discussed scattering 
models which include isobar production. I t seems 
interesting to put the above conjecture that the en
hancement is due entirely to the production of the (3,3) 
isobar to a test. Formalism related to the treatment of 
multichannel problem within the framework of disper
sion relations has also been well developed, and we 
shall follow closely that of Cook and Lee.8 

Briefly, the method is as follows. A set of equations 
for the scattering amplitudes T22, T23, and T^, which 
correspond to two-body elastic, production, and three-
body elastic processes, respectively, are developed based 
on a truncated unitarity condition that involves only 
these three processes. Then these equations are solved 
according to an input information on the production 
amplitude, which is calculated from a single-pion-
exchange diagram of an isobar model. All connections 
are discussed in terms of the analytic properties of the 
scattering amplitudes. This amounts to assigning to 
each scattering amplitude in the complex plane of its 
energy variable a "unitary cut" with the discontinuity 
over this cut given by the imaginary part of the 
amplitude as prescribed by the unitarity condition, 
and in addition, certain "dynamical singularities" to 
the production amplitude, which are evaluated from the 
single-pion-exchange diagram. 

Inelastic effects on the elastic amplitude can be seen 
very easily in a formulation based on the usual disper
sion relations. The inclusion of all inelastic processes in 
the unitarity condition modifies the approximate 
"elastic unitarity" by just the factor (oV/o^iO, where 
aT

l and aei
l denote, respectively, the total and elastic 

5 M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 
6 S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker, 

Ann. Phys. (N. Y.) 18, 198 (1962). 
7 P. Federbush, M. T. Grisaru, and M. Tausner, Ann. Phys. 

(N. Y.) 18, 23 (1962). 
8 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); 127, 

297 (1962). 
9 J. S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128, 

478 (1962). 

cross sections in the Zth partial wave state. In analogy 
to the formulations by Chew and Low10 or Frautschi 
and Walecka,11 the partial wave elastic amplitude can 
be written as 

D(W0) (W-Wo) r dW'ptW^NiW) 
frl{W)= 0 • 

N(W) wN(W) J (W'-W0)(W'-W) 

aT
l(W) <XT1(W) 

X- ip(W) , (1) 

where p(W) is the center of mass momentum, D(WQ) is 
a constant, and N(W) is some function of dynamical 
origin. This is a general solution of the unitarity equa
tions. Whatever the real part of frl may be, fi satisfies 
the unitarity condition. The imaginary part of fr1 

provides the "unitary limit" of the scattering amplitude, 
and this limit is reached only when the real part of the 
denominator vanishes. We see that this limit for fi is 
reduced whenever <TTl>o'eil

J and in fact if <TTZ takes on a 
sudden increase, as in S-wave production processes, this 
sudden depletion of the elastic channel manifests as a 
phenomenon identified as cusp in the elastic cross 
section. While the meaning of the imaginary part of 
fr1 is strictly kinematical, the real part bears the 
dynamics of the interaction. We note that the factor 
(cTTl/crei

l) now occurs within the integral, and hence the 
correction it introduces is felt long before the production 
threshold is reached. Hence, a strong production channel 
may cause substantial enhancement in the elastic 
channel at a lower energy through this mechanism. 
Assuming N(W) to be nonvarying, a factor (oV/GeiO 
different from one in the production region will cause the 
real part of fr1 to decrease, and hence an increase in 
the cross section until the production threshold is 
reached; then the increase in the imaginary part will 
cause the cross section to decrease. The combined 
effects give the cross section an appearance which looks 
deceptively like a resonance. This seems to be the case 
in nucleon-nucleon scattering, which we are about to 
investigate. 

In Sec. I I , the kinematics of the multiparticle states 
is discussed and the helicity amplitudes are defined. In 
Sec. I l l , the dynamical problem is formulated and the 
discontinuity equations over the unitary cuts are 
derived. In Sees. IV and V, the one-pion-exchanged 
amplitudes for the production process are evaluated 
and singularities of the amplitudes are discussed. 
Finally, in Sec. VI, the equations are solved with the 
input information coming from the production ampli
tudes, and the results are exhibited and discussed. The 
contributions from the complex singularities which have 
been neglected in the calculations are estimated in 
Sec. VII. 

10 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
11 S. C. Frautschi, and J. D. Walecka, Phys. Rev. 120, 1486 

(1960). 
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II. KINEMATICS AND HELICITY AMPLITUDES 

The processes that we are going to investigate are 
the following: 

(I) NipJ+Nipz) ++ N(pi')+N(p2'), 
(II) N(p1)+N(p2) ^Nip^+Nip^+Hk') , 

(III) N(pl)+N(p2)+w(k) <-> Nipfl+Nipfl+Trik'), 
(2) 

where we use TV to denote the nucleons and ir pions, and 
have indicated the momenta that these particles carry. 

The two-particle elastic process is described by the 
independent variables s and / : 

s=-ipi+p*y, t^-ip.-p.y, (3) 
where the metric is p^py.^ ~ ^ o 2 + P 2 ~ —m2. 

The description of the production process is given 
after the following decomposition of the three-particle 
state.8,12 The three-particle system is first converted 
into a two-particle system by combining one of the 
nucleons with the pion to form a subsystem. This 
nucleon is denoted by the subscript 4. The momentum 
of the w—N subsystem is q and in the center-of-mass 
frame of the total system q = — p3. This subsystem will, 
of course, have internal degrees of freedom, and these 
will be described by the variables c, a, and /3, where 

*=-fa+ky, (4) 
is the square of the "mass" of the subsystem, a and /5 
are the spherical angles measured from q to P / (where 
P4 ' is the transformed momentum of nucleon 4 in the 
rest frame of the subsystem). The production ampli
tudes describing reaction I I are therefore given by five 
variables, s, t, a, a, and /?, with 

t= - (pi-pz')*= (p-pf cosfl)2 

-Kf+m2)1*2- (pf2+m2yi2J, (5) 
where 6 is the scattering angle between pi and pz in 
the center of mass of the total system, and 

£2=(j /4)_W 2 , 

p'2= [ > - (a^+mYXs- ( c x ^ - m ) 2 ] ^ ) - 1 . (6) 

The three-particle scattering amplitudes describing 
reaction (III) are decomposed similarly, and are given 
by variables s, t, a, a, /?, <rf, a', /?', where the unprimed 
and primed variables of the pion-nucleon subsystems 
refer to the initial and final states, respectively. 

The scattering amplitudes will be helicity amplitudes, 
which we shall designate by the momenta of the 
particles and the helicities of the nucleons, as follows: 

(I) ( f t V , pJ\J | T22(s,t) | M i , M 2 > , 

(H) < ^ V , plU, Votff | T23 (*,/,</) | M i , M*>, 

(ir) <£iV, p2\2; I Ti2(s,t,o) [Ms, M4 , M>, (7) 
(III) <£ 8 V, P^t, Vctff I Tn(s,t,a,a') \ p8\h p,\h kafi. 

12 G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962). 

These states are normalized according to 

( A ' l ^ H (2x ) 3 2(^+m 2 ) 1 ^ (p -p , )5xv . (8) 

Although most of the formalism will be discussed in 
terms of the invariant variable s, the final calculations 
are carried in the variable W=slj2 which is slightly 
easier to work with. 

Following Jacob and Wick,13 the partial-wave ampli
tudes in the center-of-mass system are defined in the 
following manner: 

(I) (ft V , pM \ T22 (s,t) I M i , M 2 > 
^(27r) 3 (4 i> 0 /^ )L/ (2 /+l ) 

X(\if\2f\T22
J(s)\X1\2)d,t/(e), (9) 

where 6 is the scattering angle, and /*, v are, respectively, 
the algebraic sums of the helicities of the initial state 
along pi and the final state along p / , 

/z=Xi—X2, v=\± —X2 . 

Decomposition of the three-particle state in terms of 
the variables introduced has been given by Wick.12 

The 7T—N subsystem is treated as a single particle and 
will be characterized by its rest frame quantum numbers 
such as mass, spin, and helicity. To accomplish this the 
w—N subsystem is transformed from the center of 
mass of the total system to its own rest frame; however, 
a Lorentz transformation of this kind will in general 
change the axis of quantization of the nucleon, and the 
helicity is decomposed into a new set of helicities along 
the new direction of the nucleon momentum vector. 
Since this complication is unnecessary for our purpose, 
we shall choose to characterize the spin states of the 
nucleon 4, which forms the pion-nucleon subsystem, not 
by helicities but by the spin projection along the 
direction opposite to p3 (i.e., along q). Let us again 
denote this spin projection by X4. Then X4 is unaltered 
by the Lorentz transformation along q. Although the 
nucleons are identical particles, this unsymmetrical 
treatment of the nucleons, however, does not generate 
other difficulties as long as we neglect certain "mixed 
terms/ ' which we shall define later, in the unitarity 
condition or the cross-section formula. By a procedure 
similar to that discussed by Wick,12 we can write 

3 

I PZ\Z,P^AM$)=2 E I M S J ^ ) 

X A / ( - f t a , » W , (10) 

where j is the spin of the TT—N subsystem, X is its 
helicity, q=pf in the center of mass of the total system, 
and 

Nj(«)= ( 2 T ) [ ( 2 J + 1 ) 2 ^ V « T / * . (11) 

We see that in the present choice of variables and 
decomposition scheme, the three-particle system can be 

13 M. Jacob, and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
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treated as a set of two-particle systems, each particle 
having definite spin and helicity. The usefulness of this 
decomposition is obvious when we want to make the 
approximation that only one of the many j states of 
the subsystem is important. Since we have in mind an 
isobar model, the fact that the spin of the nucleon 4 is 
not in the usual helicity description makes no difference. 

The amplitudes for the production process are 

(II) {pz'\z',pA'Uyk'a'f3' | T2,(s,ty) | M i , M 2 > 

= (47r ) (2g 0 W/^) 1 / 2 E E ( 2 / + l ) 

X(X3'X' I Tn'-'M |XiA2K,,/(0) 

X Z V , x / ( - 0 ' , a', P'WtW), (12a) 

(II') (px'Xi',P2%'\T3i(s,t,<i)\p^,pMkofi) 

= ( 4 x ) ( 2 3 o ^ / ^ ) 1 / 2 E E ( 2 / + l ) 

X(X1'X2'l Tz/'i{s,<j) \\3\)d,,/(d) 

X A , x / * ( - ^ a , i 3 ) A ^ ( c r ) , (12b) 

where g0= (?2+<x)1/2, M==X 1 -X 2 , K = X 3 ' - X ' in I I ; 
H=\i'—X2', v=\z—X in I I ' . 

The amplitudes for the three-body process are 

(III) (^ 'X/,^'X/,A'a' i3 ' I Tn(.s,t,ffh°t) I M»>M«>&#> 

= (&r)(Mo'/W*E E E(2/+l) 

XZW*(~ft a, P)Dx>M'>X-P, «', 0') 

XNfrdNr&i), (13) 

where /*=X3—X, v=\/—\f. 
In terms of the differential cross sections, the helicity 

amplitudes are defined as 

= (4#*)-i £ ( 2 / + 1 ) ( 2 / ' + 1 ) 
^ ( e l a s t i c ) / » / ' 

X <x1'x2' 17V (*) I XAiX î V 1 r » " (5) I xxx2)* 

xdlt,/(e)dli,/'(e), 

— = C^2)-1 E (2j+i)(2j'+i)d„,/(e)d„,/'(e) 
^ ( i n e l a s t i c ) J>J' 

rffi 

J ffo 

X < X 3 V | T V W ) | X I A 2 > * , (14) 

where o-0= (2w+ju)2, <xi— (s1/2~-/x)2, with w the nucleon 
mass and /x the pion mass. 

We shall have occasion in the future to make connec
tions with the perturbation amplitudes in the Feynman 
theory. For this purpose let us define the Feynman 
amplitude F, for the scattering of two fermions, by 

S=l-i(2TrYd*(Ap)(2T)~Q 

X I I {mi/E^F^ik^ XXX2), (15) 

where Ei are the center-of-mass energies of the particles. 
The relation between the partial wave helicity 

amplitude and the Feynman amplitude is 

<X3X4|2n-/jX1X2>= dcosSd^/id) 

X {m1m2mzm4pp,/4w2syi2F(\z\A; XiX2), (16) 

where p' is the final state center-of-mass momentum. 

III. FORMULATION OF THE DYNAMICAL 
PROBLEM 

The application of the technique of dispersion rela
tions to the determination of the scattering process 
consists in treating the scattering amplitude as the 
boundary value of an analytic scattering function. The 
scattering function will have certain preassigned 
analytic properties. Due to the incompleteness of the 
theory, the exact analytic properties of the function is 
yet unknown; however, one realizes that it should 
possess a branch cut extending over the entire physical 
region of the process. The cut arises purely out of 
kinematical considerations, and is important because 
the discontinuities across this cut are known and are 
dictate entirely by unitarity. This cut is referred to as 
the unitary cut. Amplitudes evaluated from scattering 
functions containing this cut and satisfying the discon
tinuity equations will automatically satisfy the unitarity 
condition. The proper treatment of the unitarity condi
tion has led to many fruitful investigations of the 
strongly interacting systems, even though they base on 
dynamical theories which are incomplete. 

Other singularities of the amplitudes are not definite, 
and all we can say now is that we should consider 
whatever singularities suggested by field theory. In 
particular, we shall incorporate into the scattering 
functions the analytic properties of the one-pion-
exchange term for the elastic and production ampli
tudes. Therefore, the entire approach falls within the 
framework of the Feynman perturbative method where 
the lowest perturbation diagram is taken, with the 
exception that the amplitude is required to satisfy the 
unitarity condition by the analytic requirement. I t is 
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interesting to note the marked improvement of the 
result due to this modification. 

Let us now determine the set of discontinuities over 
the unitary cuts of the different scattering functions. 
The following discussion is generally valid irrespective 
of isobar approximation. Since we shall be working 
entirely with partial wave amplitudes, we shall consider 
scattering functions which are functions of the variables 
s and a only. The physical scattering amplitudes will 
be defined to be the boundary values obtained by 
approaching the unitary cuts from the upper half of the 
plane, which we shall indicate by the subscript + . 

The requirement of CPT invariance provides the 
connection that 

T22(S+) = T22*(S-) , 

r82(j+,a-+)=r28*(^,o, (17) 
TZ9(s+9(r+,<r+) = T99*(s-,<r-,<rJ). 

These relations have been shown to be generally valid 
by Olive.14 Since these amplitudes contain spinor parts, 
what we mean by Eq. (17) is that if the amplitudes are 
decomposed into a sum of terms consisting of the 
products of the scalar functions of the invariants s and 
or> and the spinor parts are chosen such that the complex 
conjugation is equal to the reversed process, then the 
scalar functions satisfy the above relations in the s and 
a variables. These relations imply that T22 and T33 are 
real functions of the variables s, <r, a', although we 
cannot conclude the same for Tw The assumption of 
time reversal invariance separately is however sufficient 
to make T32 a real function. Since T2z and T32 are now 
the same function (in the sense of the scalar function 
discussed above), we shall carry only one of them. 

Unitarity of the S matrix gives in the s channel, when 
all variables are having physical values (s^4m2, t<0, 
<T, o 7 ^ (w+/x)2), the following set of equations: 

T22(s+,t) — T22iS-tt) 

= 2 * E r 2 2 ( j . 4 / ) r M ( j - , < / ' ) 
2 

+2i L r 3 2 o + / , < 7 + ' ) r 8 2 ( * - / > _ " ) , 

3 

Tz2(s+}t,<r+) — TZ2(s-M-.) 

= 2izn2(^^>+)r22(^,0 
2 

+2i £ Tn{s+,<r+,a+',t')T^s^J',t"), 
3 

T^(s+Jt,a1+,(T2+) — Tzz(S-Jt)(Ti-ja2-) 

= 2i £ TZ2{s+yt',<T1+)TZ2(S-.1t",<T2-) 
2 

+2i £ Tn(s+,t',<T1+,<r+')T3!i(s-,t",<r^,<T-"), (18) 
3 

FIG. 2. Disconnected part of 
the three-body scattering ampli
tudes. 

where we have neglected intermediate states with two 
or more pions; the primes designate the intermediate 
variables which are to be integrated over, and the 
symbols YI2 and 213 represent two- and three-particle 
phase space integrals over the momenta of the nucleons 
and pion in the intermediate states. Letting the total 
4-momenta of the intermediate states be P , then 

Z = - [&pf (2TT)-3<5+ {p'2+rn*)d*p" (2x)~3 

2 2 J 

Xh{p'f2+^)(2ir)^(pf-\-p,f-P), 

£ = _ / , ^ / ( 2 7 r ) - 3 5 + ( ^ / 2 + w 2 ) ^ / / ( 2 ^ ) - 3 5 + ( ^ ' 2 + w 2 ) 

3 2J 

X ^ ( 2 7 r ) - 3 5 + ( ^ + M 2 ) ( 2 7 r ) 4 5 4 ( ^ + / / + ^ - P ) , (19) 

where d+ denotes the mass shell lying in the future cone. 
We note that Eqs. (18) do not yet give us the discon
tinuities across the unitary cuts in the s variable. 
However, Blankenbecler has shown that discontinuities 
in the s variable are obtained if we replace T33 by its 
connected part, Tzzz=Tzz—Twd, where Twd is the 
disconnected part, as shown schematically in Fig. 2.15 

Furthermore, following Ball, Frazer, and Nauenberg,9 

we shall introduce isobar amplitudes which are defined 
as 

M22J(S) = T22J(S), 

MZ2J>>(s,<r) - Tn^'M/M*) , (20) 

MnJ^'(s^a') = Z V ' " ' ( W ' ) / / ' t o / ' " W) , 

where fj{o) is the jth partial wave in the center of mass 
of the TT—N scattering amplitude. The M amplitudes 
are called isobar amplitudes where the interactions 
within the isobar are factored out explicitly. These 
amplitudes have no discontinuities across the unitary 
cut in the a variable,9 In terms of the isobar amplitudes, 
the discontinuity equations for the partial wave 

s 
F I G . 3 . Schematic drawing of the mixed term appearing in 

the unitarity condition and the cross-section formula. 

14 D. I. Olive, Nuovo Cimento 26, 73 (1962). 
15 R. Blankenbecler, Phys. Rev. 122, 983 (1961); see also 

Ref. 9. 
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amplitudes are 

(2i)~1(X i V I M22
J(s+)-M2/(sJ) | XiX^ 

= i @ ( s - 4 w 2 ) £ <XiV IM 22J(s+) | XJvn)(XmXn | M 2 / ( s _ ) | X!X2)+i©[>-(2m+/*)2] 

x / " ^ T £ E l/'(<r')l2{Xi'X2'|M32
J.''(%y)|XMX„)(XMXK|iif82-r''(^-/)|XiX2), 

J (To ^ i *m=-3 Xn==—5 

(2*)-1<X,'X«' | M 32/'J'̂ +,<r) - M 32J->'(s-,<r) I XiX2) 

=ie(*-4*»») £ <x3v|M32- / ' '(%^)|xmxn>(xmxre |M22'7^-)|x1x2)+ie[5- (2w+M)2] 

X / da' E I / ' ' ( O I W X / 1 J f S37''-''(s+,a,a') | X W X„) (XMX„ | I f „'>*'(s-,o>) | XiX2}, 
J (TO /'»Xjlf,Xn 

(2i)-1(X3'X4' | J f n'-'-r (s+wd-M„w (s-,<n,<r2) | X3X4) 

= 18 ( s -4m*) £ <X3'X4' IMnJ'Ks+,<n) | A«X»XA«X»|M32
J-''(*_,*,) | X«X<>+te[>- (2w+M ) 2 ] 

X?»,Xn 

/•o-l 

X / ^<r' E | / ' ' ' ( ^ ) I ^ « V l ^ i i / , / ' r X ^ , » i y ) | \ j f X » X \ « r X , | J f M ' ^ ^ \ 5 L , ( r J > « r ' ) | X ^ < > > (21) 
~/ (TO ? v / i X M , X n 

where the ® function is the usual step function, which 
is equal to one when the argument is positive and zero 
otherwise. 

The treatment of the three-particle intermediate 
states in the above equations is not entirely correct, 
where we have consistently assumed that the isobar in 
both the "bra" and "ket" vectors are formed by the 
same pair of particles. This, of course, need not be the 
case, as the isobar may be formed by the first nucleon 
in the bra vector while the isobar isobar is formed by 
the second nucleon in the ket vector.7 Especially, when 
the nucleons are identical, an antisymmetrization of the 
nucleon wave function will naturally bring in the mixed 
situation. In other words we have neglected terms like 

E < X i V | r 3 2 | (X37r)X4)(X3(7rX4)|T32iXiX2), (22) 
3 

where we have denoted the nucleons by their helicities 
and pion by x, and put parentheses around the pairs 
that form the isobars. Let us call these the "mixed 
terms." Schematically, the mixed terms are illustrated 
in Fig. 3 ; however, there are reasons to believe that the 
contributions from these mixed terms are small, and 
because they add considerable difficulties to the problem 
we shall exclude them from our calculations. These 
contributions can always be estimated. 

The rest of the information about the scattering 
amplitudes comes from perturbation theory. The one-
pion-exchange diagrams for the production amplitudes 
will be evaluated in the following sections. Since we 
shall be interested mainly in the 7 = 2 state, this state 
for the elastic amplitudes as evaluated from the one-
pion-exchange diagram is very small, and therefore can 
be neglected. 

IV. PRODUCTION AMPLITUDES IN 
THE ISOBAR MODEL 

In view of the strong resonance in the J = f , 1=1, 
J T = | state in the low-energy region of the ir—N 
interaction, commonly called the (3,3) resonance, we 
shall assume that this state dominates all others. This 
means, referring to Eq. (10), that the sum over the 
angular momentum states in the center of mass of the 
7T—N subsystem will be restricted to j = f only. In the 
isobar approximation, the ir—N resonance is replaced 
by a stable particle, denoted by N*, for which we shall 
introduce a spin-f field explicitly. The § spinor will 
satisfy the Rarita-Schwinger equation16 

( T A + ^ ¥ 3 / / = 0 , (23) 

with the subsidiary conditions 

7^3/2*= 0, dtfw»=0, (24) 

where M is the mass of iV*, which shall be taken as 
1237 MeV. 

In short, we are saying that the nucleon can exist in, 
besides in its normal state, one further isobaric state 
(at least for low-energy processes) which has the above-
described properties. This approach is well known, and 
in fact many kinematical aspects of pion production in 
nucleon-nucleon scattering can be accounted for by 
the isobar model. Lindenbaum and Sternheimer17 have 
shown that using N* alone they can get very reasonable 
fit for such experimental features as momentum spectra 
of the pion and the recoil nucleon, angular correlations 

16 W. Rarita and J. Schwinger, Phys. Rev. Letters 60, 61 (1941). 
17 R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 123, 

333 (1961). 
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between pions and nucleons, etc., for energies below 
several BeV. Furthermore, from Lindenbaum and 
Sternheimer's analysis of the energy spectra of the 
produced w meson in nucleon-nucleon scattering, one 
can deduce that at laboratory incident energies below 
1 BeV or so the iV* is produced essentially isotropically. 
This is to justify our emphasis on processes involving 
5-wave production of iV*. 

Dynamically we shall assume iV* to be coupled to 
the nucleon and the pion by a derivative coupling 

(G/mH3/2^§)+H.c. (25) 

where G is the dimensionless coupling constant, and 
the bold-face symbols denote vectors in isotopic spin 
space. Computing the decay rate r of such a particle in 
a zeroth order theory, we get 

1 2 G2 1 kKE+m) 

T 3 m2 2ir (E+w) 
(26) 

where k is the momentum of the pion in the rest frame 
ot'N*, and E=(k2+m2y^ w={k2+^2. Since r is 
related to the half-width A of the resonance by T~1 

= A/A, and taking A to be 120 MeV, we get G2=53. 
Let us denote the Fourier transform of ^3/2M, o r the 

momentum space spinor, by ^(p'), which will be 
constructed out of the direct product of a J spinor, 
u(p')> and a polarization vector 

u»(p')= ^u{p'). (27) 

The subsidiary condition #^3/2"= 0 means p/ufX(p/) — 0, 
and the polarization vector satisfying this condition is 

^e.-p/ip/e^ip'r^-ip/enpT'T112, (28) 

where e— (ex,ey,ezfi) is the direction vector, with e2= 1. 
Due to the presence of the subsidiary condition there 
are just three directions of polarization, from which 
we can form a new orthonormal basis by the linear 
combinations 

e1=(2)~1f2(~ex~iey), 

eo=ez, (29) 

e_1=(2)~1/2fe-^). 

Polarization vectors along these directions will be 
characterized by their helicities A, and their components 

~N(P3>5) N(P2>2>-

n(k) TT(k) 

>2X,,)— •' ' - ' - " N (p4X) N t y * , ) — -N'(p4X) 

FIG. 4. Feynman diagrams of the isobar amplitudes. 

will be 
6A=i=-(2)-1 / 2fe^,0,0), 

6A-O= [0,0, (pf2+M2r2/M,p'/Ml, 

€A_i=(2)-1/2(e„ -i^flft). 

(30) 

The second subsidiary condition that 7^3/2 / i=0 
guarantees that spin f is obtained from the direct 
productjrepresentation. Denoting the helicity of the 
isobar by X and that of the nucleon by X4, the combina
tions are as follows, where we write (X) = X CX4A(X4,A) 
with CX4,A being the Clebsch-Gordon coefficients. 

(i)=(i,D, 
(-I)=(f)1 /2(l,0)+(l)1 '2(- | , l) ) 

(-*)=(*)"*(§,-i)+(§)w(-*,o), 

( - § ) = ( - * , - 1 ) . 

(31) 

The input information that we shall incorporate into 
the production channel will be limited to the one-pion-
exchange amplitude calculated using the isobar model. 
The Feynman diagrams that we shall concern ourselves 
with are shown in Fig. 4. We shall take pr= (—p, E), 
p2=(v,E), pz=(-v',Ez), and p4=(p',E,), with E 
== (pH-^2)172, Ez= (p^+m2)172 and E,= (p/2+M2)172. 
The amplitude corresponding to the second diagram 
will be denoted by the superscript c. 

The Feynman amplitudes are given by 

F0(X8X;XiX2) 

= - {gGIm)Tl{px-pz)
2+^~\uu(-p'), y&x^-p)) 

X(ux»(p'),(k-p2UX2(p)), 
/V(X«X;XiX2) (32) 

= - (gGMTiip.-pzy+^j-Ku^-p'), ytuM) 

X(ux»(pf), (k-piXu^i-p)), 

where T denoted the isotopic spin matrix element, and 
for the T=l state r = — 8 / 3 . The matrix elements 
evaluated are (we use the same representation of the 
7 matrices as that used in Ref. 18) 

( " x , ( - A 76«xi ( -# ) )= (wfo)-1Cfo8#/X8-#Xi]{ |X3+Xi| cos§0- ^X3-Xi)sin^} , 

(«x , ( -# ' ) , 7BWX,(#))= ( ^ o ^ K o y X s - ^ K | X 2 - X 8 | c o s ^ - (A8+X2)sin£0}, 

•&>*&'), {k-p2),uxt(p))= E CuAuu{pf),uM{p))[e*{k-p,y~]^ 
X 4 , A 

with 

(«x4(A«x2(#))=fi( l-4X2X4f2){|X4+X2 |cos^ 

le*(k-p2y']A^-&+(2Eip/M)cose, 

(33a) 

(33b) 

(34) 

(35b) 

18 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and 
+ (X4—X2)sin|0} , (35a) D. Y. Wong, Phys. Rev. 120, 2250 (1960). 
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Ze*(k-p2y2A-±i= Tv2£ sin0 exp(=fc*0), 

and 

(u^(p'), (k-p1)vuM(-~p)) 

= E CuA*u(P')> ^l{'P))W{k-p1y-]K, (36) 
X 4 , A 

with 

(^x4(A^Xi(-^))==?i(l-4X1X4a){|X4-X1|cos|6' 
+ (X4+X1)sin^}, (37a) 

[ C * ( * - # I ) , ' ] A - O = - & - (2E*p/M)cosO, (37b) 

[ € , * ( A - # I ) " ] A - ± I = ±V2̂ > sin0 exp(=fc^), (37c) 

where 

f2=^ /(-E+i»)-1(£4+Jf)-1 , 

h=p'W/M. (38) 

Now, let us list a number of things that we want to 
do. First, we want the Feynman amplitudes to be 
properly antisymmetrized, which means for the isotopic 
triplet state (3T= 1) we should take the difference of 
the amplitudes calculated from the graphs, and let us 
define 

F32(X3X4; X1X2) = Fo(X3X4; X1X2)-Foc(X3X4; XXX2). (39) 

FQ and FQC are in general not related to each other by 
changing 0 to 71—0, although further linear combinations 
of the helicity states will have this property. Secondly, 
we want to project out the partial wave amplitudes as 
defined by Eq. (16). Finally, we want to combine the 
partial wave amplitudes into amplitudes of definite 
parity. It will be apparent later that it is easier to work 
with amplitudes of definite parities, since the amplitudes 
will be characterized by definite relative angular 
momenta. To achieve this we shall make linear combina
tions of the helicity states according to the property of 
the state under inversion. Assuming all particles to 
have positive intrinsic parities, the helicity states 
under parity operator P behave as [Jacob and Wick, 
Eq. (41)] 

(35c) For the NN* system, states of definite parity are 

(2)-^|M)±l I), 

P\JM\1\2) = ( - K - ^ l / J f - X i - A s ) , (40) 

where Si and S2 are the spins of the particles. Hence, for 
the NN system, states of definite parity are 

(2)-w|H>±|-i-i>, 
(2)-w | i- i>±|-ii>, (41) 

where the states with the minus sign have orbital 
angular momentum /==/, while the states with the 
plus sign have /= Jdbl, and the first one taken with the 
minus belongs to the spin singlet state, while the others 
belong to the spin triplet states. 

(42) 
(2)-*|4i>± I-*-*>, 
(2)-*|i-i>±|-«>, 
(2)-172|i-f)±|-M), 

where the states with minus sign have orbital angular 
momentum Z= 7=1=1, while the states with plus sign 
have / = / or 7=1=2. 

The 16 amplitudes with definite parity will be grouped 
according to their initial spin state (singlet or triplet 
of the two-nucleon system) and their initial and 
final orbital momenta, U and //. Although not all of 
them will be useful to us in the present calculation, 
we shall include them here for completeness. They are 

(A) initial spin singlet, /=/*•=//, / /±2 : 

iV=<M I TV I M>-<M I TV I - §-f > 

X K / + 1 W - G / - 1 « ] [ / ( / + D]1 /2(2/+1)-1 , 
/ even (43a) 

= 0, / o d d , 

JV=<MI 7VIMMMI 7V| - j - i ) 
=tf*ttoB-i(l-{i)(H-iO+ri(l+&)(H-*)3 

+(i-Ks)[-r1(i+£2)+r2(i-s2)]}QJ(<o 
+i?.r{ro[-fi(l-£2)+r2(l+£2)]+(4£4/M)f4 

— 2«f 6} J=O only, / even 
= 0, / o d d , (43b) 

P. J=<*-*|ZV|Ji>-<J-i |2V|-i-i> 
= i?J{f1(l-?2)(l+K)+r2(l+^2)(l-K)+fof5} 
X[<^+1(K)-e/-iMI/(/+l)]1/2(2/+l)-1, 

/ even 
= 0, / o d d , (43c) 

^ / = < i - ! | 2 V | M > - < § - f | r 3 / | - ! - i > = o . (43d) 

(B) Initial spin triplet, J=k=lf, / /±2 : 

iV=<M|7V| |- i)-<M|2V|-M> 
= 0 / even 

+ B?6- f 3«] J-I only} / odd, (44a) 
iV=<M|7V|i-f>-<f§|7V|-M> 

= 0 / even 
= 2RJ{IUU+KU-U1QJ+M-QJ-I(K)1 

X [ / ( /+1) ] 1 / 2 (2 /+1) - 1 - (V2/3) 
Xl{2E,/M)^+U~]j=iouiy} / o d d , (44b) 

P i i ' = < 4 - * | r „ ' | i - j > - < i - i | r „ ' | - « > 
= 0 / even 

+ L-UU+ (2Et/3M){t+Kt3+%tf\M only} 
/ o d d , (44c) 
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ifUEL. 

S-^.M2) ^ 3 3 - ( 2 - 2 ^ 3 2 |2 2 / " r \ 2 " •h) 
s plane 

s« m(2m*p) J 
jfMm 

\ \ 

VS+(<r«M2) 

FIG. 5. Singularities of the production amplitudes. 

^ 1 4 — \ 2 2 1 ^ 3 2 | 2 2 / \ 2 ~ 2 M 32 I — 2 2 / 

= 0 / even 
= v 3 ^ ( / - l ) ^ ( / + 2 ) i / 2 { ( f 4 _ r 6 , ) 

x[^+iW-e^_1w](2/+i)-i+(^4-r6) 
X K / W - e ^ 2 W ] ( 2 / - l ) - 1 } / o d d . (44d) 

(C) Initial spin triplet, J=li±l = lf±l; 

P 2 / = ( M | r 3 2 ^ | i - i ) + ( M i r ^ | - M } 
= 0 / o d d 
= v J ^ { ( l - ^ ) [ r 3 ^ ( , ) - f 5 e / _ l W ] 

+ Of 3) J-O only — i (f 5)j=2 only} / even , 

p^j={mTz/\h~h)+mT^\-hi) 
= 0 / o d d 

- 2 ^ { ( f 0 f 3 + f 6 - / c f 4 ) K / + l W - ^ - l W ] 
X [ / ( / + l ) ] 1 / 2 ( 2 / + l ) ~ 1 } / e v e n , 

pj— / l _ l l T ^ U —IN-LA — i I T J\ n \ 
-T23 —\2 2 I J 32 I 2 2 / i \2 2 I •* 32 |~22/ 

= 0 / o d d 

= -^{[fo(/<f4-f6) + f3(l-^)]g^(/c) 

+ Cfo(f4— / c f 6 ) - f 5 ] Q / - l W + ( —fof4+/cf3)j-=0 only 

+iC(2£4/3f)f«+fB] / -2 omy} / e v e n , (45c) 

<*—*|r„ |̂4—*>+<i—4ir, |̂—»> 
0 /odd 
V3fo{ ( / - l)^(/+2)^[(/cf 4 - f 6) 
x(eww-^-iW)(2/+i)-i+(f4-/cf6) 
X (Qj(K)~QJ-2 W ) ( 2 / - l ^ + f (f 6)/=2 only} 

/ even, (45d) 

(45a) 

(45b) 

P24'7 = 

= (M |/"s: I **>+<** IZY 2 2/ 

=-^^{: - r i ( i - fO( i+*)+f»( i+&)( i -«) ] 
xC^+i«-^- iW][- / ( /+i ) ] 1 / 2 (2 /+i ) - 1 } 

/ even 
= 0 /odd, (45e) 

=<ii|zv|ii>+<ii|r.*'l-i-i> 
= «j{feC-f1(l-&)(l+*)+f»(l+f0(i-«)] 
+ (l-K2)Cfl(l+f2) + r2(l-?2)]}^W 
+^{foC-fi(i-a)+r2(i+?2)]+(4£4/M)f6 

+ 2^3} ^=0 only / e v e n (45f) 
= 0 / o d d , 

f6=(/lo^)+(^/lo), 

=.-^{H-ri(i-&)(i+ic)+f2(n-&)(i-*) 
+fof .JOv+iM-Ov-i WJ/( /+1)] 1 / 2 

X ( 2 / + l ) " 1 } / e v e n 
= 0 / o d d , (45g) 

^>34 /=( | — f I 7132,/| i i ) + ( § — f I Tz2J\ —| —5) 

= 0, (45h) 

where 

U={2E,K/M)-{yp) 

f i= (*<#')-(#/&), 

f 3 = ( ^ 0 ) - ( ^ 2 / ? 0 ) , 

K= (5 -0—3w 2 +2 M
2 ) (4^ / ) - 1 , 

* / = (gG/w)f (p/p'y^mMy^^irW)-1. (46) 

In deriving these formulas we have made use of the 
fact that 

coseZA2J+l)Pj(cosd)Qj(K) 

= KZj(2J+l)Pj(cosd)Qj(K)-Po(cos6) 

for the successive reduction of the cos0 terms. 

V. SINGULARITIES OF THE PRODUCTION 
AMPLITUDES 

The production amplitudes in the isobar model and 
one-pion-exchange approximation, as given by Eqs. 
(43)-(45), contain many singularities which are of 
kinematical origin, such as the normalization factors 
(Ez+tn)112, etc., and these shall be removed. We are 
interested only in the singularities which are of dynam
ical origin, by which we mean the singularities arising 
from the propagator. In the partial wave amplitudes 
these singularities appear as branch lines of the Qj 
functions, and the branch points occur at K = ± 1 . 
Denoting the branch points by s±9 the equations for 
the branch points are 

5±=K3^2+a—M2)±i[(3m2+o—/x2)2 

- (0—w2)2(4w2/M
2)]1/2. (47) 

These branch points become complex as soon as 
<7> (w+ju)2. This is a well-known fact associated with 
the instability of the vertex. As we have mentioned 
before that we shall assume the production amplitude 
to possess, in addition to this branch line, a unitary cut 
running from s=4m2 to 00. We then encounter the 
difficult situation that the two cuts run into each other, 
and it becomes difficult to determine which of the several 
Reimann sheets should be taken as the physical sheet. 
To circumvent this the physical sheet is often taken to 
be the one obtained by continuing the s-plane branch 
points in the a variable from a< (m+p)2 to the desired 
a value, with a taking on a positive imaginary part. 
The loci of s± of this continuation is illustrated in Fig. 5. 
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Part of the s+ locus is shown dotted as it enters onto the 
second Reimann sheet of the unitary cut. If a is con
tinued analytically with a negative imaginary part, the 
loci are changed and s~ will move onto the second sheet 
on the upper half-plane while s+ remains on the first 
sheet in the lower half-plane. 

As the dynamical branch line moves pass the elastic 
threshold and enters the second sheet of the unitary 
cut, any integration along the unitary cut is no longer 
defined. This situation is often treated by deforming 
the path of integration into the second sheet in front of 
the advancing branch points s+ or S-. This modification 
at the elastic threshold is referred to as an anomalous 
threshold. However, a straight forward analytic con
tinuation of the amplitudes alters the properties of the 
amplitudes. Ball, Frazer, and Nauenberg9 have looked 
into this problem in detail. We give here a slightly 
different version of the treatment of the analytic 
continuation in a later section. 

To work with amplitudes which have all kinematical 
singularities removed, we shall introduce new ampli
tudes M, defined as 

where 

M22J=g2IM22
J, 

M32
J=(g3 J ,)1 /W3 2^(g201 / 2 , (48) 

g2I=(E+m)/p2I+1, 

X l(W+^2+m)/2p'J1'-1, (49) 

and / , / ' are the smallest orbital angular momenta of 
the initial and final states, respectively. The bar ampli
tudes also have the correct threshold behavior. Using 
these amplitudes, the unitarity equations for M are 
modified by replacing the factor J by xp2J and irpz1' for 
the two-particle and three-particle intermediate states, 
respectively, with 

P2i= (4:w)~1l(W--2m)/{W+2m)y+1^, 

W-ia^+m)-^1'^2 

P3 / ' _ (4TT)-

X 
rW2-{Gll2-nt)2-\r-

L W2 J 
•WrW+aW+tnr 

L W+2m . 
(50) 

These quantities are expressed in the total energy W, 
which is the variable we shall use for our calculations. 

The production process that we are mainly concerned 
with are the ones given by 7 = 2 , initial spin singlet, 
k=2, and / / = 0 . These in the one-pion-exchange 
approximation are Ph P2, Pa, and PA (where J is 
understood to be 2). The modified amplitudes, Pi 
= (g2)ll2Pt(gz)112, as we specialize to a1/2=M, can be 
written as 

P1=^2rj(W+2m)(W+M-m)lQ3(K)-Q1(K)2 
X[/x2+ (M+mym(M-m)(W)-2'2, 

p2-h(W+M+m)lW2~(M-m)2^(W)-2Q2(K) 

X { [ ( T F 2 + M 2 - w V + ( ^ 2 - ^ 2 - w 2 ) ( ^ 2 ~ w 2 ) ] 
X (2M)-ll(W2- M2~3m2+2^) 

~(W2+2m(M-m))(W2- (M+m)2)2(W)-2 

~lm2{M2~m2)2+ix2W2{W2-M2-3m^ 

X(M+m)(W)~2}, 

P^=¥/2Pl~¥/2LQ^)-QlMT(M+m)/2m3 
X[_W2- (M~m)22(W+M+m)i(M2-m2) 
X{W2-M2-m2)+lx

2{W2+M2-m2)^WY2, 

P 4 = 0 , (51) 

where 

7j = (gG/m) (W+ 2m)2 (80Wp2p'2)- (52) 

We see that these amplitudes contain the dynamical 
cuts due to the branch lines in the Q functions, but no 
other singularities in the W plane except for simple 
pole at W=0. 

VI. APPROXIMATE SOLUTIONS OF THE PROBLEM 

As we have stated before, the dynamical problem is 
formulated by assuming the amplitudes as analytic 
functions which possess the unitary cuts and some 
dynamical cuts. The discontinuity across the unitary 
cut is given by a modified form of the unitarity condition 
and the discontinuities across the dynamical cuts serve 
as the input information. I t has been shown by Blanken-
becler15 (see also Bjorken and Nauenberg19) that 
amplitudes satisfying these constraints can be developed 
into the following set of multichannel N/D equations: 

N22(W) = M22(W)D22(W)+Y, fdtrMz2t(W,<r+)Dtoi{W,<r-), 

N2e(W,a) = M22(W)D2Z
i(WJa)+Z f da/MZ2^W>a+

,)Dd^(Wya,aJ) , 

Ns2
i(W,a) = Mz2

i(W,<j)D22(W)+yZ (darM^{W,cx^)D^(W,aJ) , 
(53) 

w J. D. Bjorken wd M, Nauenberg, Phys. Rev, 121, 1250 (1961), 
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where 

Z>M(W0= 1 - / d^'CPr'-WO-V^^O^^PF'), 

2 V ( W » = - / dW'{W'-W)-"Pi(W')N^{W'^), 

and 

Dss
i'(W,<rha2) = l - [dW'(W'-W)-1pi(W

/,,r1)N33
i'-(W',aha2), 

N22(W) = fdW'(W'-W)-4A2i(W')D22(W')+Z fda'AM>(W',a+')DnKW',<r-') 

N2S
i(W,cr) = (dW'iW'-Wy^A^W^Dn'iW'^+Y, f da'A2Si(W',<r+')D^(W',a,aJ) 

Nni(W,<r)= (dW,{W'-W)AAZ2
i{W',c)Di2{W')+Yl jda'Att

i^W',a,ff+')D,^(W',irJ) 

(54) 

tfM"'(W>i,<»-j)= / W ' ^ ' - T ^ U s ^ V i W ^ V O + E fd<7'AZ3
i'(W',lrha+')Dt3

i''(W',a2,cr_') , (55) 

where the superscripts denote the different spin states, 
the a integration extends between a0 and ah the W 
integration in the D functions extends between 2m and 
oo 9 and the W integration in N runs over A #, which are 
the discontinuities of Mi3- across the dynamical cuts. 

M22(W+)-M22(WJ) 

= 2TIA22(W), 

= 2wiAZ2
i(Wy<7) = 2wiAni(W,a), 

MZ3^(W+)aha2)-M^'(W^aha2) 

= 2TiAu
i>XW,ah<T2). (56) 

Once the Ai3 are given the coupled integral equations 
for Nij and Di3 can be solved. After substituting Na 
and D^ into Eqs. (53), the Mi3- are determined. 

Since the discontinuities across the dynamical cuts 
of M22 in the J=2 state are known to be small, it is 
best to ignore it completely in order to illustrate the 
dynamical effects of the production channel Md2 on 
the elastic channel. Hence, we shall take A22 and ^33 
to be zero. From an inspection of Eq. (51), we see the 
discontinuity AB2 is most singular at W=2m, where it 
diverges as P${x) as x—> 00. This motivates Cook and 
Lee8 in doing their problem to approximate the entire 
dynamical cut by a pole atW— 2m. The pole approxima
tion has great merit that it reduces the entire set of 
coupled integral equations to a set of coupled algebraic 
equations as the kernels of the integral equations are 

then separable. The simplicity of the solution serves to 
illustrate clearly the mechanism of excitation of the 
elastic channel by the production channel. 

The amplitudes obtained from the pole approxima
tion, however, do not usually fit the calculated ampli
tudes too well in the physical region (2m^W<<*>), 
and this may be serious. To improve on the approxima
tion, we shall take the amplitudes in the physical region 
to be exactly those given by the one-pion-exchange 
calculation, but simplify the calculation by introducing 
an approximation which is suggested by the pole 
approximation, that the contribution of Di3 to Ni3 in 
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FIG. 6. Plot of the value of P. 



I N E L A S T I C E F F E C T S I N N U C L E O N - N U C L E O N S C A T T E R I N G B743 

the integration over the dynamical cut is such that only 
its value at TF=2w is meaningful (as the integrand is 
most singular there). Since we are looking at the 
singlet state of the elastic process, different spin 
amplitudes of the production process contribute in 
such a manner that we can introduce conveniently a 
single amplitude, P = (Pi2+P2

2+P3
2+P4

2)1/2, which 
will account for the summation over the spin states. 
P is plotted on Fig. 6, and is calculated in units rac2= 1. 
This means we shall introduce P throughout and drop 
the spin summation, and we get 

N22(W)^ fda^(a)P(W)DZ2(2m,<r), 

Nn(W,cr)= fdaff*(a')P(W)Dzz(2tn,<T,af), 

J (56a) 

NZ2(W,<T) = f{a)P{W)D22(2tn), 

Nzz(W,aS) = f{a)P(W)D2Z(2ni,(T'). 
By successive substitution of Dz2, NZ2y and D22 into the 
equation for N22 we get an integral equation for N22 

which is a Fredholm equation with a separable kernel. 
N22 can be solved by the standard technique, and 
similarly all Ny and Di3' can thus be solved. 

Finally, the solution for the scattering amplitudes are 

M22{W)^P{W)G{W,2m)l\-K{W,2m) 

XGQVfim)!-1, 

XM22{W)[P{W)G{W,2m)~yi, (57.) 

iww^y>=/w/(^ 
where 

G(W,2m)=(W~2m) j'da\f(a)\2 f' dW {W-W-ie)~l 

XP(W')pz(W',a)(W'-2fn)-\ 

K(W,2m)=(W-2m) fdW'(W'-W--ie)-1P(W') 

Xp2(W')(W'-2fn)-1, (58) 

and the superscript i denotes the four different spin 
states of M2Z or MZ2 corresponding to those of Pi. Here 
|/(cr)|2 is assumed to be given by a Breit-Wigner 
distribution with a half-width A of the (3,3) resonance 
in the ir—N scattering, i.e., 

I f(a) j 2= (2^)-i(A/27r)[(cr^_ikr)2+ (A/2)2]"*, (59) 

where we take (A/2) = 0.06 (in unit of mc2). G(W,2m) 
and K(W,2m) are then evaluated numerically, and 
their real and imaginary parts are plotted on Fig. 7. 
In passing let us mention that although in this particular 
problem the G and K curves computed in this manner 
look quite different from those computed using the 

TOTAL ENERGY, W (in rrtcz) 

FIG. 7. Numerical values of the real and imaginary parts 
of K(W,2m) and G(W92m)> 

pole approximation, the final differential cross sections 
computed are about the same. 

The differential cross section at 90° in the J—2 state 
for the elastic amplitude is roughly 

da/dtt^(25/16p2)\T22\
2 

- (25/16^2)(PF-2m)3(l^+2m)-5 

X[(ReG-1~ReX)2+ (ImG^+ImZ)2]"1 . (60) 

The computed cross section, as plotted on Fig. 8, shows 
a bump at around 600 MeV. Due to the lack of partial 
wave data at this energy, this bump is matched with 
the difference of the differential cross-section curves in 
the T = l and P = 0 states. This provides at least a 
comparison of the order of magnitude. The agreement is 
surprisingly good, but this should not be taken seriously, 
as on Fig. 8 another curve is shown which is calculated 
from a coupling constant G which is 20% larger than 
that estimated, and the computed curve is moved up 
quite a bit. This sensitivity is of course not unexpected, 
since unitarity connects the imaginary part of M22 with 
the square of MZ2; a change in MZ2 is magnified at least 
two times in M22 which is then squared to give the cross 
section. This also explains why small inelasticity usually 
have no effect on the elastic amplitude, since once it is 
squared it becomes negligible. Therefore, for a produc
tion amplitude to contribute substantially to an elastic 
amplitude it must be as large as the elastic amplitude, 
and to achieve this it is almost always necessary to have 
some resonance situation in the production channel so 
as to obtain maximum coherence. 

VII. COMPLEX SINGULARITIES AND 
ANOMALOUS THRESHOLD 

In the previous calculation, the contribution from the 
anomalous threshold is completely neglected. It is well 
to have in mind the order of magnitude of this feature, 
and therefore we shall give an estimate of its contribu
tion to the present problem. 

The problem of analytic continuation is most care-
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fully discussed by Ball, Frazer, and Nauenberg,9 and 
since it is very lengthy, it will not be repeated here. 
However, let us illustrate with a few lines what is 
meant by the anomalous threshold. For example, the 
production amplitude with the assigned analytic 
properties can be written as 

MZ2{s. 
Try*1 , 

^v-^-^ov) 

+ [ ds'(sf-s)-lMz2(s+',a)p2(s+') 

XM22(^V)+-.., (61) 

where the first term on the right is the Cauchy integral 
over the dynamical singularities and the following terms 
are those over the unitary cut. The representation is 
true as long as o-<m2~ (M2/2), when the dynamical cut 
and the unitary cut are separated from each other and 
the s plane thus defined is the physical sheet. However, 
as a is continued with a positive imaginary part to 
a—M2, the dynamical branch line enters the unitary 
cut in the region ^m2<s< (2m-\-fx)2 onto the second 
sheet. To avoid this protruding cut, the integral of 
second term is deformed, and we get: 

M32(s, M2+ie) 

= - I ds'is'-sy'Avis'; 
TT J C(M2) 

M2) 

ds' 0 ' - s)-1 disc[M32
J/ 0',M2)>2 (*') 

s+(M2) 

XM22(s')+[ dsf(sf-s)~"MZ2{s+',M2) 
J Am2 _ 

XP2(S+')M2*(SJ)+---, (62) 

where Mz2
u is the continuation of M%2 through the 

unitary cut in the interval 4 w 2 0 < (2w+ju)2, and we 
have written "disc" to denote the discontinuities across 

the anomalous cut, which is what has been referred to 
as the anomalous threshold (see Fig. 9). 

Since the anomalous threshold is over the complex 
region of the s plane, Ms2(s, M2+ie) is, in general, 
complex. This is also an indication of the fact that M32 
contains a cut in the real axis of the a plane and M32 
can never reach the real axis, and becomes a real-valued 
function at <r=M2, This cut, however, can be shown to 
be absent. This problem has been solved in a very 
elaborate manner in Ref. 9. In our case, in the interest 
of simplicity, we shall only impose the condition that the 
continued amplitudes be real valued, and to accomplish 
this we shall use what we call the "principal value 
continuation," which means continuationjn a is carried 
out on the function ^[M%2(s,<r+ie)+Mz2(s,<j--i€)~], 
which is the principal value part of M32. It can be shown 
that the continued amplitudes as well as the N# and 
Dij functions agree with those obtained by Ball, 
Frazer, and Nauenberg. 

To obtain any result by solving this new set of 
integral equations for the N^ and D{i functions would 
certainly mean a formidable task. Let us instead get an 
estimate of the contributions from such modifications 
by assuming their effects are small and the resulting 
amplitudes are not serious affected. The modification 
on M32 is given as 

w+ 

'I 
J k XA,2{Wf)M22{W), (63) 

where W±=sll2
±. Since the discontinuity across this cut 

is of logarithmic type, it is most singular at the end 
points W±, hence let us approximate A 32 by 

AZi(W) = TT^(W-W+)+vTJt(W-W--), (64) 

with r + =r_*. Assuming M22 is unmodified and is 
given by Eq. (57), 

AM* 
<jrir+p2(W+) G(W+,2m) 

(W+-W)(W+-2m)l-K(W+,2m)G(W+,2m) 

+ c.c. 

= 0.03[r+(TF+-T^)-1+r_(l^_-PF)-1], (65) 

which is evaluated by taking W^— (2mdtim), and G 

sssa FIG. 9. Deformation of the 
unitary integral. 
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andi£ approximated by a pole at "FT = 2m with residue 
equal to 50, which fits the one-pion-exchange amplitude 
approximately in the physical region. This result shows 
that even if the entire input amplitude were fitted by 
two poles at W+ and W-, with residues T+ and T_, 
respectively, the contribution from the anomalous 
threshold can at most amount to 3%. Hence, the initial 
assumption that its contribution is small is justified. 
The reason that ikf32 is small in this case is because the 
real parts of W± are exactly at threshold, and conse
quently P2(W±) are very small, and so are G and K 
evaluated there. However, if the real parts of W± are 
large then the contribution from such complex singulari
ties would also be large. Hence, the calculation carried 

1. INTRODUCTION 

RECENTLY some degree of understanding of the 
working of unitarity in 5-matrix theory1 has been 

developed, e.g., the way it evaluates discontinuities,2-6 

generates singularities,6'7 and enables analytic continu
ations to be made onto unphysical sheets3-5,8>9 In this 
sort of work a large number of properties or ingredients 

* This paper is a revised version of an unpublished Cambridge 
preprint circulated in July 1963 under the title "Towards an Axio-
matisation of S-Matrix Theory." Compared with this the con
clusions are restated more precisely. The work has been rearranged 
and more explanation given but no new results are included. 

f Permanent address: Churchill College, Cambridge, England. 
1 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin and Company, Inc., New York, 1961). 
2 D. I. Olive, Nuovo Cimento 26, 73 (1962). 
3 D . I. Olive, Nuovo Cimento 29, 326 (1963). 
4 D. I. Olive, Nuovo Cimento 28, 1318 (1963). 
5 J. Gunson (unpublished). 
6 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25, 901 

(1962). 
7 H. P. Stapp, Phys. Rev. 125, 2139 (1962). 
8 J. Gunson and J. G. Taylor, Phys. Rev. 119, 112 (1960). 
9 D. Zwanziger, Phys. Rev. 131, %%% (1963). 

out by neglecting the complex singularities are actually 
realistic within the framework of our program. 
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have been used. Apart from the quantum and Lorentz 
assumptions these are: (1) unitarity, (2) connectedness 
structure,2,10 (3) maximal analyticity,1 (4) the ie pre
scription (see Sec. 3), (5) Hermitian analyticity,2 (6) 
extended unitarity,3 (7) existence of unphysical region 
stable poles on physical sheets, (8) the existence of 
antiparticles, (9) the substitution law for crossed proc
esses, (10) the TCP theorem, (11) special physical 
sheet properties, (12) properties of physical region 
poles,4,5 (13) connection between spin and statistics. 

Several of these ideas can be grouped together. (5), 
(6), and (7) can be thought of as unphysical versions of 
the unitarity equations for T-matrix elements, valid 
at energies below the physical threshold of the ampli
tude concerned. The number of intermediate states 
included decreases with the energy so that (5) derives 
from the equation with no intermediate states and (7) 
from that with a single-particle intermediate state. 

10 H. P. Stapp, University of California Radiation Laboratory 
UCRL-10289, 1962 (unpublished). 
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The possibility of constructing an S-matrix theory from postulates concerning unitarity, analyticity, con
nectedness, the ie prescription and the spin-statistics connection is explored. The existence and residues of 
the physical region poles are shown to follow from the connected unitarity equations. The validity of certain 
fundamental theorems known from field theory, Hermitian analyticity, extended unitarity, the existence of 
antiparticles, the substitution law for crossed processes and the TCP theorem is reduced, in simple cases, to 
the question of whether the S-matrix singularity structure permits specific distortions of certain paths. These 
distortions are shown to be possible in a "model" singularity structure consisting of the normal thresholds, 
and depend only upon simple properties of these singularities. It is explained that it is logically impossible to 
deduce the complete singularity structure without the results we are trying to prove. A suggested resolution 
of this difficulty is to set up a scheme of successive iterations in singularity structure to be justified by self-
consistency. Then our work is the first step in such a scheme. 


